Pneumatic Products[™]

Pneumatic ProductsThe state of the st

BAP Breathing Air Purifiers...

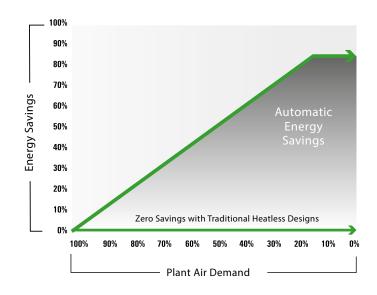
Time-Proven Reliability

In 1966, Pneumatic Products introduced the industry's first engineered, contaminant removing system to convert compressed air to safe breathing air. Over time, the designs have advanced employing the latest in filtration and dehydration technology. Today, Pneumatic Products is the most respected brand name in breathing air purification around the world.

Safety In The Work Place

Maintain Health and Safety Requirements

The BAP Series delivers breathing air quality in accordance to international standards.


OSHA: CFR1910.134 (Occupational Safety & Health Assoc)

CSA: Z180.1-13 (Canadian Standards Association)

CGA: G-7 (Compressed Gas Association)

ANSI: Z88.2-1080 (American National Standards Institute)

Environmental safety standards mandate the need for a suitable air supply to ensure worker safety. BAP Breathing Air Purifiers enable industries to meet required standards.

Optional Energy Management System

The optional energy management system automatically matches purge air requirements to real time load on the dryer. When operating at reduced capacity, the on-line drying tower remains active until the full drying capacity of the desiccant material is utilized. Each tower is precisely controlled to manage drying times to reduce purge air consumption.

Since 1946, the world has turned to the Pneumatic Products brand for the quality and service demanded by the most critical of applications. Global leaders of industry require durable components that deliver unquestionable reliability. Our precision engineered components and designs deliver outstanding service life and operational longevity. Invest in our experience and gain annuities that will grow for years.

Applications

Petrochemical

The oil and gas industries select BAP Series breathing air purifiers to protect workers from the inhalation of hazardous fumes, gases, and vapors inherent in the manufacturing process.

Asbestos Abatement

Asbestos was a commonly used insulation material for old dwellings. BAP Breathing Air Purifiers provide suitable breathing air to workers in asbestos abatement applications.

Paint Spray

Automotive body shops utilize atomized paint to spray vehicles. Workers exposed to airborne paint emissions benefit from BAP Breathing Air Purifiers.

Protective Coatings

Manufacturers utilize compressed air to apply protective coatings. Airborne compounds will not adversely affect workers when respiratory air is supplied with BAP Breathing Air Purifiers.

Confined Spaces

The quality of breathing is critical in confined space industries. Mining, vats, tanks, boilers, ships' hulls, and grain storage facilities are environments with stale, contaminated air that is unsuitable for breathing.

Pneumatic Products[™]

Optimal Performance and Operation...

Six Stage Filtration

- **Stage 1** General purpose filter removes solid and liquid contaminants down to 1.0 micron
- **Stage 2** High efficiency oil removal filter captures liquid aerosols and sub-micronic particles down to 0.01 micron
- **Stage 3** Pressure-swing regenerative desiccant dryer removes water vapor to ensure the effectiveness of the catalyst bed
- **Stage 4** Dried air travels through a catalytic converter reducing CO concentrations by converting CO to CO₂
- **Stage 5** Particulate removal filter collects contaminants 1.0 micron and larger from the purified air stream
- **Stage 6** Activated carbon filter removes oil vapor, trace odors and other gases normally absorbable by activated carbon with final particulate removal to 0.01 micron

Purification Capabilities

Excessive contamination of compressor intake air will adversely affect performance of the purifier.

BAP Breathing Air Purifiers remove moisture, solid particles, oil aerosols and mists, carbon monoxide, and hydrocarbon vapors commonly present in compressed air. The resulting air can be safely used by supplied-air breathing devices such as masks, hoods and helmets.

CONTAMINANTS	MAXIMUM A		PURIFIER OUTLET RATED CONDITIONS		
	OSHA 1	CSA			
Carbon Monoxide (CO)	10	5	95% Conversion ⁵		
Carbon Dioxide (CO ₂)	1000	600	2		
Oil (Condensed Hydrocarbons)	5	1	0		
Oil Vapor (Gaseous Hydrocarbons)	_	_	<.02 ³		
Odor	Lack of noti	ceable odor	_ 4		

 $^{^1}$ OSHA Standard references CGA (Compressed Gas Association) pamphlet G-7.1, Grade D and is generally consistent with those published by ANSI 2 CO is converted to CO $_2$ by the purifier and added to the concentration of CO $_2$ already present (normal atmospheric air contains 314 PPM of CO $_2$)

Although some CO₂ is absorbed in the desiccant beds, high concentrations of CO in the system and/or high concentrations of CO₂ at the compressor intake could result in exceeding allowable CO₂ limits

³ Will remove only those gaseous hydrocarbons normally adsorbed by activated carbon. Outlet concentration is expressed as methane equivalent, activated carbon will not remove methane

⁴ Will remove only those odors normally adsorbed by activated carbon

⁵ 95% Conversion example (200 PPM @ inlet = 10 PPM @ outlet)

Features and Options

Filtration & Monitoring

- Pre-filtration removes solids and oils
- After-filters collect remaining particles and adsorb vapor
- CO catalyst converter

Moisture Indicator

■ Visual color change

Pressure Gauges

- Left / right tower
- Inlet / outlet purifier
- Purge pressure

Standard Controller

- NEMA 4/4X with critical LED indicators
- Soft on / off switch with two power recovery modes
- Switching failure alarms
- Adjustable service indications
- Tower / valve status LEDs
- Voltage free common alarm contacts
- RS-232 communications port

Ease Of Service & Sample Testing

- Inlet & outlet valves allows isolation for maintenance
- Sample ports at both the inlet & outlet

Options

- Nema 7 electrical rating
- Copper, brass or stainless steel instrument tubing and fittings
- Breathing air analyzers
- Advanced Level -2 Controls:
 - Vacuum fluorescent text display
 - Automatic energy savings
 - Calibration-free temperature sensors
 - High inlet temperature & low inlet pressure alarms
 - Cycle counter & hours of service

Breathing Air Analyzers

OSHA maximum concentrations for breathing air:

- 10 PPM of Carbon Monoxide (CO)
- 1,000 PPM of Carbon Dioxide (CO2)
- 5 mg/m³ Oil (Condensed Hydrocarbons)

Breathing air system performance is subject to excessive intake of air contaminants. It is important that breathing air systems are routinely monitored for proper operation. The DM Series Breathing Air Purifier can be monitored using several air analyzing options.

Recommended

- Digital readout of CO concentration
- Visual and audible alarm
- Contacts for remote alarm
- Adjustable high & low alarms with indication
- Visual Fault Indicator
- Simple Push Button Operation
- Easy Field Calibration & Sensor Replacement

Analyzer Choices: Additional Option

- Multiple alarm capabilities
 - CO & oxygen
 - CO & dew point
 - CO, oxygen & dew point

Pneumatic Products[™]

DM Series Specifications...

Optimizing Capacity

Breathing air produced by a Breathing Air Purifier system can supply various levels of use. To select a BAP Series purifier, first determine the air pressure at the purifier inlet and the maximum breathing air flow required at a given time. The chart below illustrates an example of BAP Series estimated capacities based on 6-15 scfm (10-25 m³/h) per hood, helmet or suits as calculated in the sizing table.

MODELS	BAP 15	BAP 25	BAP 35	BAP 50	BAP 75	BAP 95	BAP 135	BAP 205	BAP 305	BAP 375	BAP 625	BAP 775	BAP 940
Minimum Capacity	1	2	2	3	5	6	9	14	20	25	42	52	63
Maximum Capacity	2	4	6	8	13	16	23	34	51	63	104	129	157

^{*} Contact hood manufacturer for actual capacity before sizing purifier.

Model Specifications

MODEL	INLET	ET FLOW, OUTLET			VOLTAGES	IN/OUT	DIME			MENSIONS				WEIGHT	
MODEL	INLEI	FLOW		VOLIAGES	CONNECTIONS		1	\	v	1)	WEI	GП I		
	SCFM	NM³/H	SCFM	NM³/H	V/PH/HZ	IN	IN	мм	IN	мм	IN	мм	LBS	KG	
BAP 15	18	31	15	26		1 NPT	49	1244	42	1067	35	889	440	200	
BAP 25	30	51	25	42		1 NPT	49	1244	42	1067	35	889	450	204	
BAP 35	42	71	35	59		1 NPT	49	1244	42	1067	35	889	455	206	
BAP 50	60	102	50	85	85-264/1/ 47-63 AC	1 NPT	64	1615	43	1097	38	962	560	254	
BAP 75	90	153	75	127		1 NPT	79	2006	43	1097	35	889	700	318	
BAP 95	114	194	95	161		1 NPT	56	1443	50	1270	45	1137	820	372	
BAP 135	162	275	135	229		1 NPT	56	1443	53	1356	43	1092	820	372	
BAP 205	246	418	205	348	11.5-28 V DC	1.5 NPT	75	1905	62	1575	45	1143	1190	540	
BAP 305	366	622	305	518	20 7 20	2 NPT	65	1651	66	1674	52	1327	1405	637	
BAP 375	450	765	375	637		2 NPT	74	1871	67	1702	52	1330	1560	708	
BAP 490	590	1002	490	833		2 NPT	103	2616	55	1397	69	1753	1650	748	
BAP 625	750	1274	625	1062		2 NPT	107	2718	62	1575	75	1905	2800	1270	
BAP 775	930	1580	775	1317		3 FLG	112	2845	62	1575	83	2108	3275	1486	
BAP 940	1130	1920	940	1597		3 FLG	115	2921	66	1676	82	2083	3750	1701	

¹ Flow capacity rated at CAGI conditions: 100 psig (7.0 bar) and 100°F (38°C) saturated inlet

Replacement Filter Elements

	PREFI	PREFILTERS		AFTERFILTERS		
MODEL	PR	uc	CARTRIDGE	PF	CF	
BAP 15	PR-02	UC-02	CCO	PR-02	CB-02	
BAP 25	PR-03	UC-03	CCO	PR-03	CB-03	
BAP 35	PR-04	UC-04	CCO	PR-04	CB-04	
BAP 50	PR-06	UC-06	CC1	PR-06	CB-06	
BAP 75	PR-07	UC-07	CC1	PR-07	CB-07	
BAP 95	PR-08	UC-08	CC2	PR-08	CB-08	
BAP 135	PR-10	UC-10	CC2	PR-10	CB-10	
BAP 205	PR-11	UC-11	CC3	PR-11	CB-11	
BAP 305	PR-12	UC-12	CC4	PR-12	CB-12	
BAP 375	PR-13	UC-13	CC5	PR-13	CB-13	
BAP 490	PR-14	UC-14	CC6	PR-14	CB-14	
BAP 625	PR-14	UC-14	CC7	PR-14	CB-14	
BAP 775	PR-15	UC-15	CC8	PR-15	CB-15	
BAP 940	PR-16	UC-16	CC9	PR-16	CB-16	

Capacity Correction Factors

Inlet Pressure

PSIG	BAR	100°F 38°C	105°F 40°C	110°F 43°C	115°F 46°C	120°F 49°C
60	4.2	0.65	0.64	0.62	0.6	0.58
70	4.9	0.74	0.73	0.71	0.69	0.66
80	5.6	0.83	0.81	0.8	0.77	0.74
90	6.3	0.91	0.89	0.87	0.85	0.81
100	7	1	0.98	0.96	0.93	0.89
110	7.7	1.04	1.02	1	0.97	0.93
120	8.4	1.08	1.06	1.04	1	0.96
130	9.1	1.12	1.1	1.08	1.04	1
140	9.8	1.16	1.14	1.11	1.08	1.03
150	10.5	1.2	1.18	1.15	1.12	1.07

Capacity Correction Factors

To adjust capacity for conditions other than rated, use the correction factors (multipliers) for inlet air temperature and pressure shown below.

Example: What is the capacity of a 205 scfm (348 nm³/h) model when the compressed air at the inlet is 130 psig (9 bar) and 110°F (43°C)?

Answer: 205 scfm (348 nm 3 /h) (rated flow from Product Specifications Table) x 1.08 (correction factor for inlet air temperature and pressure) = 221 scfm (375 nm 3 /h)

BAP Series

Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing.

Please contact your local sales representative for product availability in your region.

Pneumatic Products Headquarters

4647 SW 40th Avenue Ocala, Florida 34474-5788 U.S.A.

Tel.: (724) 745-1555 **Fax:** (724) 745-6040

pneumaticproducts.com